博客
关于我
[机器学习入门] 李宏毅机器学习笔记-15 (Unsupervised Learning: Word Embedding;无监督学习:词嵌入)
阅读量:456 次
发布时间:2019-03-06

本文共 593 字,大约阅读时间需要 1 分钟。

Word Embedding:机器学习中的重要应用

Word Embedding 是机器学习中的一个重要概念,尤其是在处理文本数据时,它通过将高维数据压缩到低维空间的方式,帮助我们更好地理解数据的内在结构和语义关系。

在之前的内容中,我们提到了 Word Class(词类)概念,这是对单词进行分类的过程。然而,仅仅依赖1-of-N Encoding(即每个单词用独特的向量表示)存在一个显著的问题:它无法有效地捕捉到单词之间的语义关系。例如,"猫"和"狗"虽然都属于动物类别,但1-of-N Encoding无法直接反映这一点。

Word Embedding 的出现解决了这一问题。通过将单词映射到一个连续的向量空间,Word Embedding 不仅保留了每个单词的唯一性,还能捕捉到它们之间的语义相似性。例如,"猫"和"狗"会被映射到相近的向量,反映它们都属于动物这一共同特性。

Word Embedding 的应用非常广泛。它不仅可以用来进行文本分类、推荐系统,还可以用于机器翻译、问答系统等任务。在这些应用中,Word Embedding 能够有效地减少噪声,提取有意义的信息,从而提高模型的性能。

通过 Word Embedding,我们能够更深入地理解文本数据的语义结构。这一技术为无监督学习和深度学习模型提供了重要的基础,同时也为人工智能系统的实际应用打下了坚实的基础。

转载地址:http://bghfz.baihongyu.com/

你可能感兴趣的文章
MangoDB4.0版本的安装与配置
查看>>
Manjaro 24.1 “Xahea” 发布!具有 KDE Plasma 6.1.5、GNOME 46 和最新的内核增强功能
查看>>
mapping文件目录生成修改
查看>>
MapReduce程序依赖的jar包
查看>>
mariadb multi-source replication(mariadb多主复制)
查看>>
MaterialForm对tab页进行隐藏
查看>>
Member var and Static var.
查看>>
memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
查看>>
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
MongoDB学习笔记(8)--索引及优化索引
查看>>
ms sql server 2008 sp2更新异常
查看>>
MS UC 2013-0-Prepare Tool
查看>>
msbuild发布web应用程序
查看>>